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ABSTRACT 

Dolphins exhibit a range of vessel-response behaviors, from readily approaching 

and bow-riding, to other behaviors that are indifferent, or actively evasive. However, the 

factors responsible for this variation have not been examined. We used a tree-based 

modeling method to investigate the influence of geography, time of day, species 

composition, and fishery exposure on the responses of five species (10 management 

stocks) of dolphins in the eastern tropical Pacific, comprising ten management stocks. 

Data were collected for 2,667 sightings during four research cruises between 1998 and 

2003. The relative frequency of five responses (approaching the vessel, bowriding, 

running, school splitting, and low-swimming) showed significant (p < 0.0005) variability 

among species, as well as among stocks within the same species. Striped (Stenella 

coeruleoalba), whitebelly spinner (S. longirostris), and western-southern spotted 

dolphins (S. attenuata attenuata) tended to be evasive, while coastal spotted (S. attenuata 

graffmani) and common bottlenose dolphins (Tursiops truncatus) tended to be attracted 

to the vessel. There was a strong tendency of dolphins sighted farther offshore to be 

significantly more evasive than those less than about 100nm from the coast. The degree 

of evasiveness in stocks that are frequently targeted by the tuna purse-seine fishery 
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(northeastern spotted – S. a. attenuata, eastern spinner – S. longirostris orientalis, and 

short-beaked common – Delphinus delphis) was greater with more purse-seine activity in 

the vicinity, while no significant relationship was found for those stocks that are rarely 

set on. For each stock, vessel-response had a relatively unique suite of predictors, 

indicating an interplay of intrinsic, natural extrinsic and anthropogenic factors. 
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INTRODUCTION 

Small cetaceans respond to vessels at sea in a variety of ways, ranging from 

attraction, usually by approaching the boat to ride pressure waves, to apparent 

indifference, to clear avoidance (Leatherwood & Reeves 1983, Würsig et al. 1998, Ritter 

2002). This range of reactions likely results from a combination of factors including 

ecological adaptation, historical experience, natural predisposition, habituation or 

learning, demographic effects of school size or composition, time of day, season, and 

weather (Würsig et al. 1998). 

Some species are relatively consistent in their behavior. For example, Dall’s 

porpoises (Phocoenoides dalli) and bottlenose dolphins (Tursiops spp.) are well-known 

as bow-riders of transiting vessels throughout their range, whereas harbour porpoises 

(Phocoena phocoena) and humpback dolphins (Sousa spp.) almost never ride the bow 

despite being nearshore species with ample opportunities (Barlow 1988, Würsig 2002, 

Jefferson 2000, Jefferson 2002). In other species, however, vessel-response behavior 

varies geographically. For example, striped dolphins (Stenella coeruleoalba) readily 

bow-ride in the Mediterranean Sea (Gaspari et al. 2007), do so less often in the Gulf of 

Mexico (Würsig et al. 1998), and rarely bow-ride in the eastern tropical Pacific (this 

study).   

In addition to the factors mentioned above, there are also some anthropogenic 

activities that are known to modify vessel-response behavior. For example, several 

species of small cetaceans, such as common bottlenose dolphins, rough-toothed dolphins 

and false killer whales (Psuedorca crassidens) are attracted to and follow a wide variety 

of fishing vessels to feed on bait, catch, or discarded bycatch (Nitta & Henderson 1993, 



 4 

Chilvers & Corkeron 2001, Gilman et al. 2006), while tour boats may variously attract or 

repel animals (Lusseau 2003, Goodwin & Cotton 2004, Neumann and Orams 2006).  

In the eastern tropical Pacific (ETP), an oceanic region including the coastal waters of 

southern California to northern Peru and oceanic habitat out to Hawaii, a speciose 

dolphin community exists that displays a wide range of behavior in response to vessels 

and experiences a range of anthropogenic activities. Thirteen species of delphinids are 

regularly recorded here (Wade & Gerrodette 1993); some of which have been divided 

into stocks for management purposes. Each stock occupies overlapping but different 

habitats within the region, has differing patterns of association with other species, and has 

differing degrees of interaction with human activity (Reilly 1990, Perrin et al. 1991, 

Wade & Gerrodette 1993). 

For many of these stocks, the primary anthropogenic factor in their environment 

is a large purse-seine fishery for yellowfin tuna (Thunnus albacares).  Since the late 

1950s, this fishery has utilized a unique ecological association between dolphins and 

large tuna by chasing and encircling the more visible dolphins at the surface to capture 

the tuna swimming below (National Research Council 1992). This association is specific 

to certain dolphin stocks and does not occur with equal frequency throughout the ETP. In 

the 1960s and early 1970s, the incidental dolphin mortality in the fishery was on the order 

of hundreds of thousands of dolphins per year, but through management action and 

modified fishing practices, recorded mortality has declined by over 99% (Wade 1993, 

Gosliner 1999, IATTC 2006). While mortality in the nets has dropped to approximately 

1000 dolphins per year, the purse-seine fishery continues to conduct about 8,000 - 14,000 

sets on dolphins per year, chasing, capturing and releasing millions of dolphins annually 
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(Perkins & Edwards 1999, Archer et al. 2002, IATTC 2006). The two main targeted 

stocks, the northeastern offshore spotted dolphin, Stenella attenuata attenuata, and the 

eastern spinner dolphin, S. longirostris orientalis, are currently listed as “depleted” under 

the U.S. Marine Mammal Protection Act, and show little, if any, sign of recovery 

(Gerrodette & Forcada 2005, Wade et al. 2007).  

Since the early days of the fishery, tuna fishermen and scientists have observed 

that in regions of heavy fishing, dolphins of targeted stocks tend to be wary of purse 

seiners, require longer chases, and are more difficult to encircle (Orbach 1977, Norris et 

al. 1978, Holts et al. 1979, Stuntz & Perrin 1979, Allen et al. 1980,, Pryor & Kang 1980, 

Schramm Urrutia 1997, Heckel et al. 2000, Lennert-Cody & Scott 2005). For example, as 

the seiner and its speedboats approach, offshore spotted dolphin schools in more fished 

areas are reported to "explode", breaking the school into smaller subgroups and 

sometimes forcing the set to be aborted (Orbach 1977, Stuntz & Perrin 1979, Allen et al. 

1980). The dolphins are also known to swim low in the water with nearly imperceptible 

movement, only to "blow through," or rapidly swim out of the containment circle formed 

by the seiner and the speedboats, thus escaping capture (Holts et al. 1979, Allen et al. 

1980). 

In this paper, we describe patterns of vessel-response for the five most commonly 

encountered dolphin species in the ETP based on four dolphin survey cruises conducted 

by the Southwest Fisheries Science Center (SWFSC) during 1998, 1999, 2000 and 2003. 

Using a tree-based modeling method, we then examine the relative influence of a set of 

spatial, temporal, phylogeographic, social, and anthropogenic factors on dolphin vessel-

response in this tropical ocean community.   
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METHODS 

The Study Area and Species/Stocks 

Our study area encompasses some 21 million km
2
 of ocean in the ETP, a 

heterogeneous oceanic region centered on the eastern Pacific warm pool (Ballance et al. 

2006, Fiedler & Lavín 2006). The region is characterized by moderately high 

productivity and a strong and shallow thermocline (Wyrtki 1966, Fiedler & Talley 2006, 

Pennington et al. 2006) and supports a diverse and abundant community of dolphins 

(Wade & Gerrodette 1993). For this analysis, we selected the five most frequently sighted 

species, comprising ten management stocks (Table 1, Figure 1). The stocks have different 

geographic distributions, live mainly in different habitats within the ETP, have different 

patterns of association with other delphinid species, and have differing degrees of 

interaction with the fishery. 

Ten species and stocks were examined (Table 1:  

1) the common bottlenose dolphin (Tursiops truncatus), which is widespread in 

the ETP but more common closer to shore (Wade and Gerrodette 1993), 

2-4) the short-beaked common dolphin (Delphinus delphis), which is divided into 

three management stocks (northern, central and southern) based on disjunct geographic 

distributions and subtle morphological differences (Perrin et al. 1985), 

5-7) the spotted dolphin, Stenella attenuata, which is divided into coastal (S. a. 

graffmani) and offshore (S. a. attenuata) subspecies (Perrin 1990), with two offshore 

stocks recognized: the northeastern spotted dolphin inhabits the core area of the ETP and 

the western-southern inhabits the outer region, 
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8-9) spinner dolphins, including the eastern form, S. l. orientalis, which occurs in 

the core area and is known for its marked sexual dimorphism and distinct male 

reproductive features (Perrin & Mesnick 2003), and the “white-belly” spinner, occuring 

in the outer region and thought to be a hybrid between the eastern spinner and the 

pantropical Gray’s spinner (S. l. longirostris) and found farther west and to the south 

(Perrin et al. 1985, Perrin et al. 1991, Dizon et al. 1994), and 

10) the striped dolphin, S. coeruleoalba, a pelagic species with no named 

subspecies.    

Common dolphin habitat is characterized by cool, upwelling-modified waters; 

spotted and spinner dolphins are primarily found in warm, tropical waters; striped 

dolphins occupy habitat that in many features is intermediate between the other two 

patterns; and common bottlenose dolphins occur throughout the region from coastal to 

offshore waters (Au & Perryman 1985, Reilly 1990, Reilly & Fiedler 1994, Ballance et 

al. 2006). 

 

Data Collection 

The primary objective of the SWFSC cruises was to conduct line-transect surveys 

to estimate cetacean abundance in the area affected by the tuna purse-seine fishery and 

adjacent parts of the ETP. In this study, we use data collected from 1998 - 2000 and 2003 

onboard four different research vessels (NOAA ships David Starr Jordan, McArthur, 

McArthur II, and University of Rhode Island vessel Endeavor) between July and 

December of each year. The ships are similar in length (52 - 68m) and observer eye 
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height above the water (~10m). Over 100,000 km of trackline were covered on effort 

during this time, over the coastal, core and outer regions of the study area. 

Methods of collecting dolphin abundance data followed standard protocols for 

line-transect surveys conducted by the SWFSC (Kinzey et al. 2000). During daylight 

hours and in good weather, a visual search for cetaceans was conducted on the flying 

bridge as the ship moved along the trackline at approximately 10 knots. While on duty, 

two observers, one on each side of the ship, scanned a 100  wedge that started abeam of 

the vessel on their side and ended 10  past the trackline on the opposite side of the bow 

with 25x pedestal-mounted "big-eye" binoculars. A third observer searched by eye and 

with hand-held 7x binoculars, covering the area close to the trackline. 

When marine mammals were sighted, the ship diverted from the trackline and 

approached the school in order to identify species and stock composition, estimate group 

size, and observe the school’s response to the research vessel. After counts were 

completed and all species were identified, typically requiring 5 – 45 minutes, observers 

recorded their observations on a standardized sighting form (NOAA Form 88-208) that 

asked for answers to a series of behavioral questions and a written narrative of the event.  

Prior to the cruises, all observers attended a training course detailing the observation and 

recording of behavioral observations using standardized terms. While observers had 

varying levels of experience, at least one-third had 20+ years of experience observing the 

behavior of pelagic dolphins.  For this study, we used the observers’ account of the 

presence or absence of each of five discretely coded objective vessel-responses to give a 

profile of a school’s reaction to the vessel: approaching the boat (Approach), bow-riding 

(Bow-ride), running from the boat (Run), low swimming (Lowswim), and school-
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splitting (Split). These behaviors were specifically chosen because they were 

unambiguous to define, clearly visible from the flying bridge, and indicative of whether 

the dolphins were attracted to or avoiding the research vessel.  The behaviors Run, 

Lowswim and Split resulted in the dolphins leaving the area, ceasing surface activity and 

parts of the school moving off in opposite directions, respectively.  Conversely, 

Approach and Bow-ride caused animals to close the distance between the school and the 

ship and in the case of Bow-ride to come so close as to swim in the wake of the vessel.  

Observers were also asked to categorize the general evasiveness of each group (Evasive) 

based on the presence or absence of the above responses, additionally observed 

behaviors, and their experience with pelagic dolphin behavior.  One form was filled out 

for each sighting, representing a consensus opinion of all observers on duty at the time. 

In this study we used the average of the on-duty observers’ best estimates of 

school size. Calibration studies have shown that while these values may be a slight 

underestimate of the true school size, there is no significant difference in the relative 

values between observers or between sightings (Gerrodette and Perrin 1991).  

 

Data Used in Analyses 

We only used data from sightings for which all five objective vessel-responses 

were recorded as either present or absent and the general evaluation of evasiveness of the 

group was recorded as either Evasive or Non-Evasive. Thus, all responses were treated as 

binary variables. By taking the five objective responses together, a series of 32 behavioral 

profiles were formed (= all 2
5
 possible combinations of objective vessel-responses). 
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Each group was classified as “pure” if dolphins of only one stock were present, or 

“mixed” if otherwise. We estimated the distance to shore for a group by calculating the 

distance to the nearest landmass (including islands) using ArcView v3.1. The school size 

and stock composition of each group was taken from data recorded by the observers on 

the flying bridge. The school size used was the mean of the three on-effort observers’ 

best estimates (Kinzey et al. 2000). 

Two measures were used to evaluate the exposure that individual dolphins within 

a group may have had with purse-seining in the ETP. First, we counted the number of 

purse-seine sets that occurred prior to the sighting within a 300-nautical-mile (556 km) 

radius during the previous 70 days. The spatial and temporal extent of this ambit was 

chosen based on the results of studies of movements by spotted dolphins in the ETP 

(Perrin et al. 1979, Hedgepeth 1985) and of stress effects (Southern et al. 2002). The 

number of purse-seine sets within the specified area was only available from Inter-

American Tropical Tuna Commission (IATTC) observer data, which represent 

approximately 50% of the total number of sets made, as they do not include sets made by 

vessels carrying observers from the various national programs (IATTC 2006). 

Second, we calculated the average annual estimated fishery mortality for each 

stock from 1998-2000 (Archer et al. 2002). During the years of this study, purse-seine 

sets were predominantly made on northeastern offshore spotted dolphins and eastern 

spinner dolphins, while striped, bottlenose and coastal spotted dolphins were rarely set 

upon (IATTC 2006). To account for this differential exposure to the fishery, we ranked 

each stock based on the average mortality in the fishery as reported in the IATTC Annual 
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Reports (IATTC 2006). These mortality ranks were then used in the analysis described 

below. 

 

Behavioral Differentiation of Stocks 

Restricting the data to sightings of only pure schools, we used a 
2
-test to 

examine differences in the frequency distribution of each behavior and the behavioral 

profiles among stocks. Significance was determined with a standard permutation test of 

5000 replicates. Additionally, 
2
-tests were performed between all pairs of stocks. The 

2
-statistic from the pairwise test was used as a distance metric in a k-means cluster 

analysis to identify stocks that exhibited similar behavioral profiles. All statistical 

analyses were conducted using R v2.5.0 (R Development Core Team 2007). 

 

Predictors of Vessel-Response Behavior: Random Forest Analysis 

In order to evaluate the relative influence of geography, time of day, species 

composition, and fishing activity on the vessel-response behaviors we used the Random 

Forest analysis (Brieman 2001) as implemented in the randomForest package coded for 

R (Liaw & Weiner 2002). Random Forest is an extension of the standard Classification 

and Regression Tree algorithm (CART – Breiman et al. 1984) in which the goal is to 

identify variables which are “important” predictors for the response under consideration. 

Random Forest operates in the following manner: In each iteration, a CART tree is built 

on a bootstrap sample of the data. During the building process, at each node, a set of 

predictor variables are randomly selected and the best of these predictors are used to split 

the sightings. The sightings continue to be split in this manner until a full, un-pruned tree 



 12 

is grown, where each terminal node predicts a single sighting. In our analyses, each forest 

was created from 1000 repetitions of the above procedure. 

The suite of predictor variables used is given in Table 2. The response variables 

examined were the five objective vessel-responses described above (Approach, Bow-ride, 

Run, Lowswim, and Split) as well as the general evaluation of evasiveness (Evasive). 

One Random Forest was built for each of these six response variables using all sightings 

containing the ten stocks of interest. Additionally, we built six forests for each of the ten 

stocks by iteratively selecting only those sightings in which a given stock occurred. Thus, 

a total of 66 Random Forests were built. In this analysis, all sightings without missing 

data for the response and predictor variables were used. In order to account for 

heterogeneity in the frequencies of any given response and allow under-represented 

behavioral responses to have equal weight in the model, the size of the bootstrap sample 

of sightings for each category (response present or absent) was constrained to be equal. 

The sample size was selected as the minimum of the size of the smallest category, or half 

of the total number of sightings. 

 The error rate of a forest is estimated by examining the prediction error of 

sightings not in the bootstrap sample for each tree. The aggregate misclassification rate 

for these “out-of-bag” or “OOB” cases is called the “OOB error rate”. The “importance” 

of a predictor variable in a forest is assessed by examining how the prediction error 

increases when that predictor is permuted in the OOB cases. The measure of variable 

importance that we used was the “mean decrease in accuracy” as defined in Liaw & 

Wiener (2002). For each random forest run, null distributions of variable importance 

scores were generated by 1000 random permutations of the response variable. Variables 
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with importance scores greater than 95% of their null distribution were considered 

significant. 

 Finally, in order to visualize the relationship between the response variable and 

each predictor variable determined to be important in a given forest, we examined all 

plots of partial dependency for significant predictors. These plots depict the relationship 

between the predictor variable of interest on the x-axis and the log-odds of the presence 

of the response variable on the y-axis given the classification patterns of that predictor in 

the assembled forest. The full formula is provided in the documentation for partialPlot 

(Liaw & Wiener 2002) with a detailed description given by Friedman (2001). 

 In our presentation of these results and the discussion that follows, we will refer 

to responses to vessels as being more or less likely given a particular predictor. In these 

presentations, one should keep in mind that these determinations are relative to an overall 

probability of the given response and that the value of the predictor is modifying this 

probability. As an example, a response with a low probability (log-odds < 0) in the 

absence of a predictor can have an even lower probability in its presence, indicated by a 

smaller (more negative) log-odds value. Thus, for some partial dependency plots we 

discuss with significant relationships, all of the log-odds may be positive (behavior tends 

to be present) or negative (behavior tends to be absent). 

 

RESULTS 

Frequency, Composition and Group Size of Sightings 

In the four surveys conducted from 1998 to 2000, and 2003, complete vessel-

response data (all five responses and general evasiveness) were collected for 1,443 
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sightings of the ten stocks of interest (Table 1). Of these, over 90% of common (northern, 

central, and southern stocks), coastal spotted, and striped dolphin sightings were of pure 

schools. Approximately 75% of the bottlenose dolphin sightings were pure, with most of 

the remaining mixed-species sightings containing Risso’s dolphins (Grampus griseus), 

short-finned pilot whales (Globicephala macrorhynchus), rough-toothed dolphins (Steno 

bredanensis), or offshore spotted dolphins (Stenella attenuata attenuata). Both eastern 

and whitebelly spinner dolphins were sighted the majority of the time in mixed-species 

schools (74% and 67% respectively), and both were predominantly sighted with 

northeastern offshore spotted dolphins. Conversely, northeastern and western-southern 

offshore spotted dolphins were only slightly more likely than not to be sighted in a 

mixed-species school (55% and 58% respectively). When found in a mixed school, these 

two dolphins were predominantly schooling with eastern or whitebelly spinners. 

 Average estimated school size for all groups was 108 dolphins with a median of 

56, ranging from 1 to 2,795. Short-beaked common dolphins, eastern and whitebelly 

spinners, and western-southern offshore spotted dolphins tended to occur in the largest 

schools, while common bottlenose, striped, and coastal spotted dolphins tended to be 

sighted in smaller schools. For all stocks but southern short-beaked common dolphins, 

the median school size of mixed-species schools was larger than that of pure schools. 

Variation in Response among Stocks 

There was significant variation in the distribution of behavioral responses among 

stocks (Figure 2). Both common bottlenose and coastal spotted dolphins frequently 

approached and rode the bow, rarely exhibited any of the three evasive responses (Run, 

Lowswim, Split) and were rarely characterized as Evasive. The reverse pattern was seen 
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in southern common, whitebelly spinner, western-southern spotted, and striped dolphins, 

which were much more likely to exhibit evasive responses. The remaining four stocks 

(northern and central short-beaked common, eastern spinner, and northeastern spotted 

dolphins) exhibited a range of responses, although northern short-beaked common 

dolphins tended to be less evasive than the other three. 

As expected, there was significant correlation among responses such that the 

distribution of response profile frequencies (Figure 3) closely mirrored that of the 

individual responses. The 
2
-test indicated a significant differentiation of the profile 

frequency distributions among stocks (p < 0.001). Only four of the 45 pairwise 

comparisons (Table 3) were non-significant (p > 0.05): eastern spinner v. central short-

beaked common (p = 0.18), eastern spinner v. northeastern spotted (p = 0.40), central v. 

southern short-beaked common (p = 0.58), and western-southern spotted v. whitebelly 

spinner (p = 0.29), suggesting greater similarity between these stocks. 

The similarities of the stocks’ response profiles as revealed by the pairwise 
2
-

tests were summarized in the cluster analysis (Figure 4), which indicate three well-

defined nodes. The most distinct represents the three highly evasive stocks: striped, 

whitebelly spinner, and western-southern spotted.  Common bottlenose and coastal 

spotted dolphins, while having significant differences in their response profile 

frequencies, are grouped together in the center of the figure, indicating their similar 

tendencies to be attracted to the vessel. The final node contains the remaining five stocks, 

which exhibited both attractive and evasive responses to the vessel. Within this node, the 

two stocks frequently found together, eastern spinner and northeastern spotted dolphins, 
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share a node, as do central and southern short-beaked common dolphins, with northern 

short-beaked common dolphins external to these two groups. 

 

Exposure to the Fishery 

Two measures were used to evaluate the exposure that dolphins in a group may 

have had to the tuna purse-seine fishery: the number of dolphin sets occurring around the 

sighting within 300 nm and the previous 70 days (“dsets”), and the rank of the total 

mortality (“mort.rank”) of each stock from 1998-2000. Figure 5 summarizes these two 

measures for the ten stocks examined. While central short-beaked common dolphins had 

the largest median number of sets (211), they were only ranked fifth in terms of 

magnitude of kill in the fishery. Likewise, while eastern spinner dolphins had the highest 

reported kill, they only ranked fourth in terms of the median number of sets in the ambit 

(n = 75). The three stocks with the lowest number of individuals killed were striped, 

coastal spotted, and common bottlenose dolphins. Additionally, southern short-beaked 

common dolphins ranked low on both measures. No stock had both a large number of 

sets in the ambit and a high kill in the fishery. 

 

Predictors of Vessel-Response Behavior 

In the Random Forest analyses (see Appendix), the distance from the coast was 

found to be the most important variable in classifying whether or not a sighting would be 

Evasive, Approach, Bow-ride, or Run (p < 10
-4

). It was also a significant predictor for 

analyses of Lowswim and Split, being second and fourth most important respectively. In 

all analyses, the response variables exhibited consistent relationships with distance from 
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coast, tending to reflect more evasion and less attraction to the vessel the farther offshore 

(Figure 1). From Figure 6 we estimate that sightings are equally as likely to be evasive as 

non-evasive approximately 100nm offshore. 

Variables related to the stock composition of the sighting were also identified as 

being significantly important in these analyses. Patterns of the variable “stock” were 

similar to those seen in the cluster analysis. Groups which approached the vessel, rode the 

bow, or were judged to be non-evasive were most likely to contain bottlenose or coastal 

spotted dolphins. Those which ran were most likely to contain southern short-beaked 

common, whitebelly spinner, western-southern offshore spotted, or striped dolphins. 

Western-southern offshore spotted and striped dolphins were also the most likely to 

exhibit low-swimming behavior. Pure schools (those composed of a single stock) were 

three times less likely to split than mixed-stock schools. Schools composed of a relatively 

larger fraction (approximately > 60%) of common bottlenose or coastal spotted dolphins 

were significantly less likely to split. 

The ship from which the observations were made was a significant predictor both 

of overall evasiveness and for each of the five specific behaviors. The probability of 

observing evasive behaviors was slightly less on the David Starr Jordan than on the other 

three ships. However, there was no was no consistent pattern among the McArthur, 

McArthur II, and Endeavor. Although tracklines were randomly assigned so as to ensure 

complete coverage throughout the survey area, operational constraints resulted in the 

David Starr Jordan tending to survey the coastal sections and offshore regions closer to 

the shore, while the McArthur, McArthur II, and Endeavor tended to work in the offshore 
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regions. Thus, this result possibly reflects more of the relationship between behavior and 

distance from shore than a ship-specific reaction. 

 

Stock-Specific Predictors of Vessel-Response 

Given that stock composition was a significant predictor of vessel-response 

behavior, we also conducted a Random Forest analyses for each response on sightings 

consisting of each of the ten stocks separately. Because some stocks did not exhibit a 

sufficient variety of some responses, we were only able to conduct 48 of the possible 60 

Random Forest analyses. For each of the ten stocks grouped into their respective species 

below, we report the significant results of these analyses. 

 

Common bottlenose dolphins. Approaching the vessel and bow-riding were significantly 

related to the size of schools, with larger schools being more likely to exhibit these two 

responses. Most of the significant predictors of evasiveness for these dolphins tended to 

relate to the species composition of the group.  For example, an increase in the fraction of 

rough-toothed dolphins was significantly related to an increased likelihood that a 

bottlenose dolphin group would be evasive. The likelihood that a school would split 

increased with an increasing fraction of eastern spinner dolphins, offshore spotted 

dolphins, or rough-toothed dolphins. Conversely, the presence of a higher percentage of 

short-finned pilot whales, coastal spotted dolphins, or false killer whales in a group 

tended to decrease the likelihood of school splitting. 
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Short-beaked common dolphins. For all three stocks, overall evasiveness was 

significantly related to distance from coast (Figure 7), although the stocks tended to have 

varying degrees of evasiveness as previously noted. The number of dolphin sets in the 

ambit was a significant predictor for all responses in northern short-beaked common 

dolphins except school splitting. The pattern was consistent with an increase in the 

number of sets being related to an increase in the likelihood of evasive behaviors 

(Evasive, Lowswim, and Run – Figure 8), and a decrease in Approach and Bow-ride. 

For central short-beaked common dolphins, the number of dolphin sets in the 

ambit was only significant (α = 0.05) for Approach, with a pattern similar to that seen in 

the northern stock. However, the p-value for the relationship with Evasive in this stock 

was 0.07, and the pattern for this behavior was also similar to that seen in the northern 

stock. The most important predictor of school splitting in the central stock was school 

composition, with mixed schools (n=3) being three times as likely to split as pure 

schools. 

Aside from the above-mentioned relationship of distance to coast to overall 

evasiveness, there were almost no significant predictors of behavior for southern common 

dolphins An exception is school splitting, for which the only significant predictor was 

time of day. Groups of this stock sighted later in the day were less likely to exhibit 

splitting behavior. 

 

Spinner dolphins. Evasiveness in eastern spinners was significantly related to the distance 

from the coast as described above. The number of dolphin sets in the area was a 

significant predictor for Evasive, Approach, Bow-ride, Run, and Lowswim, with evasive 
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behaviors being more prevalent for sightings with more than approximately 100 sets 

(Figure 8). The likelihood of school splitting was related to school composition, with 

mixed-species schools, or schools with a large fraction of northeastern spotted dolphins, 

tending to split more. Although there were no significant predictors for any response for 

whitebelly spinners, the number of dolphin sets was the most important predictor for 

Evasive (p = 0.12) and Run (p = 0.18), and distance to coast was the most important 

predictor for Lowswim (p = 0.27) and the second most important predictor for Split (p = 

0.16). 

 

Spotted dolphins. The three stocks of spotted dolphins exhibited considerably different 

vessel-response patterns. Because coastal spotters were relatively consistent in their 

attraction to the vessel, most responses only had a few predictors identified as being 

significant, but many of these did not seem to be biologically important. The analysis did 

suggest that this stock was about 1.5 times more likely to approach the vessel after 

approximately 9am. 

Evasive behavior for northeastern spotted dolphins was primarily predicted by 

distance from the coast. At approximately 280nm offshore, sightings were equally likely 

to be evasive as non-evasive. Various predictors related to school composition played a 

secondary role. Schools of moderate size (10-200) tended to be more evasive than those 

smaller or larger. An increase in the proportion of spinner dolphins in a group tended to 

make that group more evasive. The third significant predictor of evasiveness was the 

number of purse-seine sets in the ambit. An increase in the number of recent sets from 0 

to approximately 100 increased the probability of evasiveness approximately 35% 
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(Figure 8). This pattern was also seen in the analyses of Run, Split, and Lowswim, 

however the number of sets was only significant in the analysis of Lowswim. The reverse 

of the above patterns were more strongly seen in the analyses of Approach and Bow-ride. 

For western-southern spotted dolphins, Evasive, Bow-ride, and Run were also 

significantly related to the distance from shore. Pure schools were more likely to run and 

less likely to split. However, there was no significant relationship with any behavior nor 

with the frequency of a particular secondary stock or species in the school. There were no 

significant predictors of Lowswim. Unlike with northeastern spotterd dolphins, none of 

the behaviors were significantly related to the number of recent sets, which was fourth 

lowest overall in rank for this stock. 

 

Striped dolphins . Unlike the other species, striped dolphins are found mainly in offshore 

areas and do not have a named neritic population. Although striped dolphins were 

relatively evasive throughout their range, schools in regions closer to the coast tended to 

be less evasive. School splitting was the only other behavior for which there were 

significant predictors. These predictors tended to be factors related to school 

composition; mixed-species groups were three times as likely to split as pure schools. 

 

DISCUSSION 

The results of our analysis show clear patterns of behavior in response to vessels 

among the species of dolphins most frequently encountered in the eastern tropical Pacific 

(ETP). Previous research on ETP dolphin behavior has largely been restricted to 

observations made of schools involved in purse-seine operations (Orbach 1977, Norris et 
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al. 1978, Stuntz & Perrin 1979, Pryor & Kang 1980, Hecke et al. 2000, Lennert-Cody & 

Scott 2005). This study expands the literature by describing the behavioral variability of 

these animals from the vantage point of a research vessel and by covering a larger 

geographic area. We also employ a comparative approach which explores some of the 

potential causal factors of this variation, the significant patterns of which are discussed 

below. 

 

Distance from Shore 

Our study area encompasses approximately 21 million km
2

 of ocean in the ETP 

including coastal waters from southern California to northern Peru and oceanic habitat 

out to Hawaii. As is evident from Figure 1 and the results of the Random Forest analysis, 

there is a strong geographic trend in all species and stocks examined in which non-

evasive behaviors are seen more frequently closer to shore, while evasive behaviors are 

more common offshore. One factor which may be related to this onshore-offshore pattern 

that we did not quantify in this study is the exposure of the various stocks to boat traffic 

in general. Dolphins in the wild often surf waves, whether they are waves breaking on the 

beach, swell or wind waves in the open ocean, pressure waves of large whales, or bow 

waves of boats (Würsig 2002). Dolphins that live nearer to the coast undoubtedly 

experience both more and a wider variety of vessels and have possibly become habituated 

to boats, thus making them more likely to bow-ride.  

Many environmental variables, such as productivity and thermocline depth and 

strength, vary in a complex manner across the ETP, overlaid on a roughly 

onshore/offshore gradient and reflecting the heterogenous oceanographic nature of the 
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region (Wyrtki 1966, Fielder & Talley 2006, Pennington et al. 2006). These 

oceanographic characteristics have been found to be significant predictors of dolphin 

distribution and abundance (Au & Perryman 1985, Reilly 1990, Ballance et al. 2006), and 

the availability of resources is well known to alter behavior in other species (Würsig & 

Würsig 1980, Rubenstein & Wrangham 1986, Beale & Monaghan 2004). Thus it is 

possible that further analyses would identify a relationship between the response patterns 

described here and measures of productivity or forage. 

 

Time of Day 

In our study, time of day was not consistently an important predictor of response 

to vessels. The only two notable relationships were for southern short-beaked common 

dolphins, which were less like to exhibit school splitting later in the day, and coastal 

spotted dolphins, which were slightly less likely to approach the vessel early in the 

morning. Other studies have shown that schooling behavior varies on a regular, daily 

cycle (Norris & Dohl 1980, Norris et al. 1994, Scott & Cattanach 1998). In offshore 

spotted dolphins, school size and mixing with other species increases in the morning and 

decreases in the afternoon (Scott & Cattanach 1998), which may be related to protection 

from predation (Norris & Dohl 1980). 

 

Phylogeographic variation among species and stock 

Our data show that vessel-response behavior varies significantly both among 

species and among stocks within species. Both striped and western-southern spotted 

dolphins tended to be evasive in almost all sightings, while common bottlenose and 
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coastal spotted dolphins were largely non-evasive. The behavioral profile of northeastern 

spotted dolphins was more similar to those of eastern spinner and all three stocks of 

short-beaked common dolphins than to the conspecific western-southern offshore or 

coastal spotted dolphins. These results demonstrate that response behavior can be highly 

variable within a species, likely driven by environmental factors. The behavioral 

variability observed in spotted, spinner and common dolphins is consistent with the 

pronounced morphological, life history and ecological differences among the 

geographically distinct stocks of these species in the ETP (Figure 1; Perrin 1975, Perrin 

et al. 1985, Perrin 1990, Perrin et al. 1991, Perrin et al. 1994, Dizon et al. 1994). In 

contrast, common bottlenose dolphins and striped dolphins were relatively consistent in 

their behavior across vast distributions in the ETP. Bottlenose dolphins were usually 

attracted to the research vessel and striped dolphins invariably evaded. These species 

showed similar differences in behavior in other regions as well, such as the Gulf of 

Mexico (Würsig et al. 1998). 

 

School Composition and School Size 

In addition to stock-specific behaviors, response to vessels was also significantly 

affected by school composition, with pure schools being significantly less likely to split.  

However, small schools were also very unlikely to split; therefore, it is possible that this 

relationship is largely due to pure schools tending to be smaller on average.  

In some cases, it was also apparent that the presence of particular species in a 

school affected vessel-response behavior. As an example, eastern spinners and 

northeastern offshore spotters are most commonly found in schools together. While 
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tending to be evasive overall, schools with relatively more spotted dolphins had a higher 

likelihood of approaching the vessel and bow-riding, while presence of more spinner 

dolphins tended to increase general evasiveness and low-swimming and decrease the 

non-evasive responses. Heckel et al. (2000) also found differences in the evasive 

behavior of northeastern offshore spotted and eastern spinner dolphins during tuna purse-

seine fishing operations.   They observed that eastern spinner dolphins tended to be more 

cohesive during chase and evaded capture more frequently by diving under the net after it 

was set, whereas northeastern offshore spotted dolphins were more likely to be 

fragmented before the chase and to evade capture by dispersing or “exploding” as the net 

was set and pursed. 

The presence of common bottlenose dolphins tended to increase the likelihood of 

a school approaching and bow-riding and decrease the evasive responses. Common 

bottlenose dolphins are well known as bow-riders the world over, “hitching” rides on 

transiting vessels (Würsig et al. 1998, Würsig 2002). As a consequence of their 

distribution in coastal waters, and their tendency to associate in schools with a variety of 

other species, common bottlenose dolphins may have more experience with bow-riding 

on vessels and this behavior may have spread to other populations and even other species 

– a form of cultural transmission (Rendell and Whitehead 2001) - facilitated by their fluid 

social structure and habit of mixing with other species (Wells et al. 1980, Scott & Chivers 

1990, this study). Mixed-species groups that contained even a small percent of bottlenose 

dolphins tended to be non-evasive (e.g., the northeastern spotted dolphins noted above; 

western-southern offshore spotted), and species which rarely approached vessels in pure 

schools were observed to approach and sometimes bow-ride when they were in mixed-
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species schools with common bottlenose dolphins (e.g., Risso’s dolphins and rough-

toothed dolphin; data not shown). The behavioral response of common bottlenose 

dolphins to vessels has been studied in a number of coastal locations around the world 

(Shane 1990, Janik & Thompson 1996, Chilvers & Cockeron 2001, Nowacek et al. 2001, 

Lusseau 2003, Goodwin & Cotton 2004, Lusseau 2004, Lusseau 2005, Bejder et al. 

2006a, b). Results show a wide range of short- and long-term evasive and non-evasive 

responses based on factors such as vessel type, duration and degree of exposure, whether 

vessels provide foraging opportunities and whether vessels maintain a predictable course. 

For the ETP, we know relatively little about the nature or duration of association 

in the mixed species schools, as our observations lasted only as long as required to 

accurately count and identify the stocks present. However, the frequency and specificity 

of school mixing differed significantly among stocks (Table 1). Encounters with mixed 

schools of spotted and spinner dolphins are not only more common than encounters with 

pure schools, but these species are more often encountered with each other than with any 

other species.  For spotted and spinner dolphins, occurring in mixed schools with the 

other species is a fundamental aspect of their biology in the ETP (Perrin 1975, Perrin et 

al. 1979), as is their association with tuna and seabirds (Perrin 1969, Orbach 1977, Au & 

Pitman 1986, Au 1991, Edwards 1992). School mixing rarely involves common or 

striped dolphins, and while bottlenose dolphins occur in mixed species groups frequently, 

they mix with a variety of species. As stocks show differing tendencies to mix, it is 

reasonable to predict that behaviors which disrupt mixed schools, such as school splitting, 

will have differing affects on the individuals, depending on the nature of the association 
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and whether it is causal or longer term, opportunistic or obligatory, and the duration of 

the disassociation.     

 

Fishery Interactions 

Our results indicate that changes in behavior are not only apparent in the long-

term as demonstrated by Heckel et al. (2000) and Lennert-Cody & Scott (2005) but are 

also evident in the short-term. Those dolphins which have historically been targeted by 

the fishery (northeastern spotted, eastern spinner, and northern short-beaked common) 

changed their response behavior in correlation with the number of recent purse-seine sets 

in the vicinity of the group within a relatively small window of time and space (70 days 

and 300 nm). Conversely, no significant correlation was found for stocks which are less 

involved with the fishery. 

Our measure of exposure to the fishery was a simple count of the number of 

IATTC-observed dolphin sets made within the above-defined window. Because 

approximately half of the purse seine trips carry IATTC observers and the remaining half 

carry national-program observers, we did not measure the total number of sets occurring 

around the sighting, albeit fishing effort can be expected to be correlated in time and 

space to some extent between sampled and un-sampled vessels. If we assume that the 

national program-observed sets are similar to the IATTC-observed sets, then our measure 

of fishery exposure should be approximately half that, of the true exposure. Because 

these extra sets would be evenly distributed with respect to our sightings we would not 

expect their omission in this study to affect our conclusions. However, if national 

program-observed sets tend to fish more heavily in one area, then their exclusion could 
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affect the patterns we have reported. 

Dolphins are long-lived, large-brained animals, and long-term exposure to the 

fishery represents considerable opportunity for learning. Since the late 1960s and early 

1970s, the purse-seine fishery has conducted about 8,000 - 14,000 sets on dolphins per 

year (IATTC 2006), extending over generations of dolphins and across the ranges of 

several stocks. The overall capture frequency per individual dolphin is estimated to be 

about eight times per year (Perkins & Edwards 1998). Although greater than 99% of the 

dolphins are released alive, it is clear that dolphins have learned from their exposure and 

interactions with the industry. As dolphins show an increase in evasive behaviors due to 

their recent interaction with the fishery, it will be important to assess whether these 

behaviors, while presumably effective in preventing temporary capture in a  purse-seine 

net, may over the long-term be detrimental to the integrity and the social functioning of 

the school itself (Norris 1974, Curry 1999, Archer et al. 2001, Edwards 2005).  

It should be emphasized that some of the dolphin stocks targeted by the tuna purse 

seine fishery are not recovering as expected, and management efforts are focused on 

better understanding both direct and indirect fishery effects on the populations 

(Gerrodette & Forcada 2005). While the effects of direct mortality can be related to 

population-level impacts (Gerrodette & Forcada 2005, Wade et al. 2007), it is much more 

difficult to assess the potential impacts of indirect effects.  Presumably, evasive behaviors 

decrease the chances of dolphins being encircled. However, if avoidance carries costs, 

then dolphins must balance these costs against the benefit of reduced encirclement. These 

costs may include physical exertion, physiological stress, separation of mothers and 

calves, shark fatalities, and other as yet unknown aspects of social and ecological 
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disruption (Norris 1974, Orbach 1977, Curry 1999, Archer 2001, 2004, Edwards 2005). 

In addition, avoidance behaviors create a trade-off between avoiding risk and other 

fitness-enhancing activities, such as feeding, predator avoidance, parental care, and 

mating (Frid & Dill 2002).  Even in better studied coastal populations (e.g., Lusseau 

2003, Williams et al. 2006), linking short-term behavioral changes to long-term 

population-level impacts is challenging and the relationship is not expected to be 

straightforward (Gill et al. 2001, Beale & Monaghan 2004).  However, in both marine 

and terrestrial species, there are indications that repeated short-term avoidance behaviors 

can lead to long-term impacts at the population level, through behavioral changes in 

habitat use and foraging (Yarmoloy et al 1988, Gerrodette & Gilmartin 1990, Nellemann 

et al. 2000, Phillips & Alldredge 2000, Lusseau 2005), communication (Slabbekoorn & 

Ripmeeester 2008, stress physiology (Foley et al 2001 Müllner et al., 2004) and social 

functioning (Poole & Thomsen 1989, Bejder et al. 2006a). Further investigation of these 

factors is important, because while being chased has been implicated in the lack of 

recovery, the mechanism is not yet understood. 

It is important to emphasize that the behaviors we have examined reflect the 

reaction of dolphins to our research vessel. While several other studies have examined the 

reaction of dolphins to purse-seiners during chase, encirclement and release, it is 

unknown to what extent these behaviors are similar to those exhibited around other kinds 

of vessels the dolphins may encounter. Additionally, our observations began when the 

school was detected and usually lasted only as long as was necessary to make reliable 

abundance estimates and stock identifications. In order to get accurate group size 

estimates and make species identifications, our research vessels actively pursued groups. 
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Therefore, in many of the sightings the interactions were initiated by us and may not 

reflect the response of the dolphins to a vessel that maintains its course and does not close 

on them. 

While we have examined several vessel-responses and a variety of potentially 

mediating factors, dolphin vessel-response behavior is even more variable than discussed 

here. Differences among groups may also be influenced by factors such as recent social 

interactions, other human activities such as the overall concentration of vessel traffic, 

season, weather, and ecological and oceanographic conditions. Our analyses could be 

enhanced by employing better estimates of recent fishing activity and the frequency of 

interaction and exposure that an individual dolphin experiences, either via modeling 

efforts, or by collecting empirical data from electronic tagging experiments. 
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Table 1. Stock designations, number of sightings, school size distribution, and frequency 

of species in mixed sightings. “Pure” sightings are those in which only one stock is 

present, “mixed” sightings contain one or more stocks. Data from 1,443 sightings used in 

analyses in this study. Stock definitions taken from Dizon et al., 1994. 

 

Stock Code 
Latin Name 

Common Name 

Pure Sightings 

# sightings 

mean size (sd) 

median size (range) 

Mixed Sightings 

# sightings 

mean size (sd) 

median size (range) 

Sighting mixing frequency 

BOTTLE 
Tursiops truncatus 

Bottlenose 

206 

43 (198) 
16 (1 – 2795) 

70 

68 (63) 
46 (6 – 313) 

16 Grampus griseus 

16 Globicephala macrorhynchus  

11 Steno bredanensis 
10 Stenella attenuata attenuata 

5 Stenella longirostris orientalis 

4 Stenella attenuata graffmani 
3 Pseudorca crassidens 

1 Lagenorhynchus obscurus 
1 Lissodelphis borealis  

1 Stenella longirostris spp 

6 Unidentified 

COMM.N 
Delphinus delphis 

Short-beaked common 

(northern stock) 

68 
210 (286) 

134 (7 – 1700) 

2 
187 (91) 

187 (123 – 251) 

1 Stenella coeruleoalba 

1 Tursiops truncatus 

COMM.C 
Delphinus delphis 

Short-beaked common 

(central stock) 

79 
127 (98) 

95 (14 – 426) 

3 
208 (291) 

62 (18 – 543) 

2 Stenella attenuata attenuata 

1 Unidentified 

COMM.S 
Delphinus delphis 

Short-beaked common 

(southern stock) 

37 
284 (237) 

232 (9 – 1025) 

4 
211 (132) 

166 (111 – 400) 

2 Stenella coeruleoalba  

2 Delphinus delphis 

SPIN.ES 
Stenella longirostris orientalis 

Eastern spinner 

33 

165 (197) 

82 (7 – 807) 

93 

172 (117) 

144 (40 – 783) 

88 Stenella attenuata attenuata 

5 Tursiops truncatus 
1 Stenella attenuata graffmani  

4 Unidentified 

SPIN.WB 
Stenella longirostris longirostris 

Whitebelly spinner 

19 
92 (94) 

65 (10 – 398) 

39 
270 (239) 

227 (56 – 1348) 

38 Stenella attenuata attenuata 

1 Stenella coeruleoalba 

1 Stenella longirostris longirostris 
4 Unidentified  

SPOT.NE 
Stenella attenuata attenuata 

Offshore spotted 

(northeastern stock) 

104 
74 (65) 

56 (6 – 375) 

128 
168 (114) 

147 (26 – 783) 

95 Stenella longirostris orientalis 

12 Stenella longirostris longirostris 
8 Tursiops truncatus 

7 Stenella longirostris spp 

1 Stenella longirostris (southwestern form) 
1 Stenella coeruleoalba 

1 Steno bredanensis 

7 Unidentified  

SPOT.WS 

Stenella attenuata attenuata 

Offshore spotted 
(western-southern stock) 

31 

79 (58) 
57 (12 – 208) 

43 

292 (239) 
242 (28 – 1348) 

26 Stenella longirostris longirostris 
8 Stenella longirostris (southwestern form) 

4 Stenella longirostris spp. 

3 Stenella coeruleoalba 
1 Delphinus delphis 

1 Tursiops truncatus 

1 Unidentified 

SPOT.CO 
Stenella attenuata graffmani 

Coastal spotted 

119 
68 (97) 

33 (3 – 620) 

10 
100 (66) 

70 (44 – 255) 

7 Tursiops truncatus 

1 Stenella longirostris orientalis 

1 Delphinus delphis 
1 Unidentified 

STRIPED 
Stenella coeruleoalba 

Striped 

338 
46 (41) 

33 (2 – 258) 

17 
163 (142) 

116 (28 – 580) 

6 Delphinus delphis 

4 Stenella attenuata attenuata 

1 Stenella longirostris (southwestern form) 
1 Stenella longirostris longirostris (whitebelly)  

1 Grampus griseus 

1 Orca orcinus 
3 Unidentified  
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Table 2. Predictor variables examined in Random Forest analyses. 

 

 
 

Variable 
Name 

Type Description 

ship factor 
Identifier of vessel from which observations were made (MAC = McArthur, DSJ = David 
Starr Jordan, END = Endeavour, MACII = McArthur II) 

hour continuous Hour of day of sighting in local time (minutes and seconds converted to decimal) 

stock factor One of ten stocks listed in Table 1 

pure factor Sighting was of a single stock (TRUE) or mixed stocks (FALSE) 

best continuous Best estimate of total school size in sighting 

pct.XXX continuous Percent of sighting composed of stock XXX (n = 23 stock codes in all sightings) 

dist.coast continuous Distance to nearest coast in nautical miles (including Hawaiian and Galapagos Islands) 

dsets continuous Number of dolphin sets made within 300 nautical miles and previous 70 days 

mort.rank discrete Rank of average mortality for stock from IATTC Annual Reports 
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Table 3. Results of pairwise 
2
-test of behavioral profiles. 

2
-statistic is given below the 

diagonal, p-value from 5000 replicates above the diagonal. Shaded values indicate 

nonsignificant results (p > 0.05). Results using all sightings are in table A, results from 

sightings of “pure” schools are in table B. 

 
 

A) All Sightings          

 BOTTLE COMM.C COMM.N COMM.S SPIN.ES SPIN.WB SPOT.CO SPOT.NE SPOT.WS STRIPED 

BOTTLE  0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

COMM.C 161  0.0088 0.5777 0.1818 0.0002 0.0002 0.0018 0.0002 0.0002 

COMM.N 69 30  0.0002 0.0004 0.0002 0.0002 0.0002 0.0002 0.0002 

COMM.S 187 15 43  0.0444 0.0088 0.0002 0.0202 0.0020 0.0374 

SPIN.ES 172 20 40 23  0.0006 0.0002 0.4001 0.0002 0.0002 

SPIN.WB 234 39 74 18 34  0.0002 0.0032 0.2905 0.0354 

SPOT.CO 52 145 77 142 142 180  0.0002 0.0002 0.0002 

SPOT.NE 210 40 56 34 21 38 166  0.0002 0.0002 

SPOT.WS 257 49 80 20 46 7 189 45  0.0026 

STRIPED 477 106 233 36 137 32 451 148 38  

           

           

B) Pure Sightings          

 BOTTLE COMM.C COMM.N COMM.S SPIN.ES SPIN.WB SPOT.CO SPOT.NE SPOT.WS STRIPED 

BOTTLE  0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

COMM.C 152  0.0128 0.7688 0.8520 0.5013 0.0002 0.0514 0.0656 0.0002 

COMM.N 70 29  0.0002 0.0936 0.0006 0.0002 0.0004 0.0002 0.0002 

COMM.S 160 13 38  0.1914 0.6113 0.0002 0.0754 0.4121 0.0290 

SPIN.ES 104 10 21 11  0.0256 0.0002 0.1562 0.0006 0.0002 

SPIN.WB 148 15 38 6 15  0.0002 0.6047 0.4959 0.6145 

SPOT.CO 40 134 69 128 93 128  0.0002 0.0002 0.0002 

SPOT.NE 145 26 43 23 20 12 123  0.2855 0.0002 

SPOT.WS 177 23 45 8 24 6 140 16  0.5971 

STRIPED 422 104 223 36 80 10 424 104 12  
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Figure 1. Research vessel sightings by stock. Open squares indicate sightings in which 

the school was evasive relative to the research vessel and closed squares indicate 

sightings in which the response to the research vessel was non-evasive.  
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Figure 2. Frequency of six vessel-response behaviors for each stock. Behavior 

abbreviations on y-axis are A)pproach, B)owride, R)un, S)plit, L)owswim, and E)vasive.
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Figure 3. Frequency of behavioral profiles for each stock. Profile designations on y-axis 

indicate presence of listed vessel-responses where A)pproach, B)owride, R)un, S)plit, and 

L)owswim (e.g. RSL = running, splitting, and lowswimming were observed, while 

approaching and bowriding were not). “none” indicates that none of the responses were 

observed. 
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Figure 4. Cluster dendrogram from 
2
 values of behavioral profiles presented in Figure 3. 
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Figure 5. Fishery exposure of each stock. Left panel depicts distribution of number of 

dolphin sets made around sightings of each stock. Right panel indicates average mortality 

for each stock from IATTC Annual Reports from 1998-2000. 
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Figure 6. Partial plot of the log-odds of evasiveness relative to the distance from the coast 

using all sightings. Dashed line represents equal probability of being evasive or non-

evasive.
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Figure 7. Partial plots of the log-odds of evasiveness relative to the distance from the 

coast for northern (COMM.N), central (COMM.C), and southern (COMM.S) common 

dolphins. Dashed line represents equal probability of being evasive or non-evasive.
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Figure 8. Partial plots of the log-odds of evasiveness relative to the number of purse-seine 

sets around the sighting for the three stocks of dolphins most frequently involved in 

purse-seine operations: northeastern-spotted (SPOT.NE), eastern spinner (SPIN.ES), and 

northern common (COMM.N) dolphins. Dashed line represents equal probability of 

being evasive or non-evasive.  
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Appendix. Permutation p-values for significant predictors (p <= 0.05) of vessel-response 

(n = 1000 permutations). Results for all sightings are listed first followed by sightings of 

each stock. Symbols represent results for each of the six responses as indicated in legend. 

Partial plots for all random forest runs are available from the author on request. 
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